Model 28 circular slide rule by Concise Ltd.

1. Section 1.5: exponential functions
2. Section 1.6: inverse functions and logarithms
The inverse function: reverse engineering

Observation

If we reverse the direction of the arrows, then the result might not be a function.

- Exactly one arrow departs from every point in D.
- Points in C that are not in the range of f are not hit by an arrow.
- Points in the range of f may be hit by more than two arrows.
Definition

A function \(f: D \to C \) is one-to-one if \(f(x_1) \neq f(x_2) \) for every \(x_1 \) and \(x_2 \in D \) with \(x_1 \neq x_2 \).

- This is equivalent with: for all \(x_1 \) and \(x_2 \in D \) we have: if \(f(x_1) = f(x_2) \) then \(x_1 = x_2 \).
- For a one-to-one function every point in \(C \) is the end point of *at most* one arrow.
Example

The function $f(x) = 2x - 1$ is one-to-one.
The Horizontal line Test

If f is one-to-one, then a horizontal line intersects the graph of f in at most one point.
Example

The function \(f(x) = 2x^2 - 1 \) is not one-to-one.

- Notice that from \(f(x_1) = f(x_2) \) follows: \(x_1^2 = x_2^2 \), which does not imply \(x_1 = x_2 \).

- Observe that

 \[
 f(1) = 2 \cdot 1^2 - 1 = 1,
 \]

 and

 \[
 f(-1) = 2 \cdot (-1)^2 - 1 = 1,
 \]

 hence \(f(1) = f(-1) \).

- The graph of \(f \) does not satisfy the horizontal line test.

- One counterexample suffices.
The inverse function

Theorem

If \(f: D \to C \) is one-to-one, then reversing the arrows yields a function from the range of \(f \) to \(D \).

\[
f^{-1}: \text{range}(f) \to D
\]

- This function is called the **inverse of** \(f \), and is denoted as \(f^{-1} \).
Finding the inverse function

- If \(y = f(x) \), then \(x = f^{-1}(y) \).
- Finding the inverse means: solve the equation \(y = f(x) \) for \(x \).

Example

Find the inverse of \(f(x) = 2x - 1 \).
Let $y = f(x)$. Then (x, y) lies on the graph of f.

From $y = f(x)$ follows $x = f^{-1}(y)$, so (y, x) lies on the graph of f^{-1}.

The points (x, y) and (y, x) are reflected across the line $y = x$.

The graph of f^{-1} and the graph of f are symmetric with respect to the line $y = x$.
Definition

The constant function \(c : \mathbb{R} \rightarrow \mathbb{R} \) assigns \(c \) to every \(x \in \mathbb{R} \).

\[
\begin{align*}
D = \mathbb{R}, & \quad C = \mathbb{R} \\
\end{align*}
\]
Definition

The identical map \(\text{id} : \mathbb{R} \rightarrow \mathbb{R} \) assigns \(x \) to every \(x \in \mathbb{R} \).

\[
D = \mathbb{R}, \quad C = \mathbb{R}
\]
A linear function $f: \mathbb{R} \to \mathbb{R}$ is defined as

$$f(x) = ax + b, \quad a \neq 0.$$
Definition

For every integer \(n \) we define

\[
x^n = \begin{cases}
 1 & \text{if } n = 0, \\
 x \cdot x \cdot \ldots \cdot x & \text{if } n \geq 1, \\
 \frac{1}{x^{|n|}} & \text{if } n < 0.
\end{cases}
\]
Definition

For every positive integer n we define the $\sqrt[n]{x} = x^{\frac{1}{n}}$ as the inverse of $f(x) = x^n$ where the domain of f is assumed to be

- $[0, \infty)$ if n is even,
- \mathbb{R} if n is odd.

![Graphs of square root functions](image)

$\sqrt{x} = \sqrt[4]{x}$

$\sqrt[4]{x} \neq \sqrt{x}$
Definition

- For arbitrary fractions \(\frac{p}{q} \) (with \(p \) an integer and \(q \) a positive integer) we define
 \[
 x^{\frac{p}{q}} = \left(x^{\frac{1}{q}} \right)^p.
 \]

- If \(\alpha \in \mathbb{R} \) is not a fraction, then \(x^{\alpha} \) is defined by limits. This is beyond the scope of this course.

Basic properties

For arbitrary \(^1\) \(x, y, \alpha \) and \(\beta \) we have

1. \(x^0 = 1 \)
2. \(1^\alpha = 1 \)
3. \(x^\alpha y^\alpha = (x y)^\alpha \)
4. \(x^{\alpha+\beta} = x^\alpha x^\beta \)
5. \(x^{\alpha-\beta} = \frac{x^\alpha}{x^\beta} \)
6. \((x^\alpha)^\beta = x^{\alpha\beta} \)

\(^1\) Some combinations of \(x, y, \alpha \) and \(\beta \) may not be defined.
Examples

- $3^{1.1} \cdot 3^{0.7} = 3^{1.1+0.7} = 3^{1.8} = 3^{\frac{9}{5}} = \sqrt[5]{3^9}$

- $\frac{\sqrt{11}^3}{\sqrt{11}} = (\sqrt{11})^{3-1} = (\sqrt{11})^2 = 11$

- $(7\sqrt{2})^{\sqrt{2}} = 7^{\sqrt{2} \cdot \sqrt{2}} = 7^2 = 49$

- $7^\pi \cdot 8^\pi = (7 \cdot 8)^\pi = 56^\pi$

- $\left(\frac{4}{9}\right)^{\frac{1}{2}} = \frac{4^{\frac{1}{2}}}{9^{\frac{1}{2}}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$
 or $\left(\frac{4}{9}\right)^{\frac{1}{2}} = \sqrt{\frac{4}{9}} = \sqrt{\left(\frac{2}{3}\right)^2} = \frac{2}{3}$
If I have 1000 Euro in a savings account and the bank gives 5% interest each year, what will be my savings after 5 years?

<table>
<thead>
<tr>
<th>Year</th>
<th>Savings (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>1000 \cdot (1.05) = 1050.00</td>
</tr>
<tr>
<td>2</td>
<td>1000 \cdot (1.05)^2 = 1102.50</td>
</tr>
<tr>
<td>3</td>
<td>1000 \cdot (1.05)^3 = 1157.63</td>
</tr>
<tr>
<td>4</td>
<td>1000 \cdot (1.05)^4 = 1215.51</td>
</tr>
<tr>
<td>5</td>
<td>1000 \cdot (1.05)^5 = 1267.28</td>
</tr>
</tbody>
</table>

![Graph showing exponential growth of savings over 5 years](image-url)
If I have 1000 Euro in a savings account and the bank gives 5% interest each year, what will be my savings after 35 years?

<table>
<thead>
<tr>
<th>Year</th>
<th>Savings (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>1000 \cdot (1.05)^5 = 1267.28</td>
</tr>
<tr>
<td>10</td>
<td>1000 \cdot (1.05)^{10} = 1628.89</td>
</tr>
<tr>
<td>15</td>
<td>1000 \cdot (1.05)^{15} = 2078.93</td>
</tr>
<tr>
<td>20</td>
<td>1000 \cdot (1.05)^{20} = 2653.3</td>
</tr>
<tr>
<td>25</td>
<td>1000 \cdot (1.05)^{25} = 3386.35</td>
</tr>
<tr>
<td>30</td>
<td>1000 \cdot (1.05)^{30} = 4321.94</td>
</tr>
<tr>
<td>35</td>
<td>1000 \cdot (1.05)^{35} = 5516.02</td>
</tr>
</tbody>
</table>
Definition

Let $a > 0$. The **exponential function** with base a is $f(x) = a^x$.

\[y = 2^x \]
\[y = 3^x \]
\[y = 10^{-x} = 0.1^x \]
Exponential growth and decay

Definition

- If a quantity y depends on time and y is proportional to an exponential function, then we say that y grows exponentially.
- If the base is less than 1 we say that y decays exponentially.

- the human population (annual growth percentage $\approx 1.14\%$),
- carbon dating (the half-life of ^{14}C is approximately 5730 years),
- compound interest,
- Moore’s law: the number of transistors on integrated circuits doubles approximately every two years.

Exponential growth and decay

If y grows exponentially, then there are constants a and y_0 such that

$$y(x) = y_0 a^x.$$
The natural exponential function

- The derivative of an exponential function is proportional to the function itself.
- If \(f(x) = a^x \) then \(f'(x) = K a^x \) for some constant \(K \).
- There is one specific base value for which \(K = 1 \). This base is called \(e \) and is approximately \(e \approx 2.71828182845904523536028747135266249775724709 \ldots \)
- The function \(e^x \) is called the **natural exponential function**.
Exponential growth and decay

Let $a > 0$, then there is a constant $c \in \mathbb{R}$ such that

$$a = e^c.$$

For every x the following holds:

$$a^x = (e^c)^x = e^{cx}$$

If y grows exponentially, then there are constants c and y_0 such that

$$y(x) = y_0 e^{cx}.$$

- If $c > 0$, then $a > 1$ hence y is exponentially growing, and c is called the **growth rate**.
- If $c < 0$, then $a < 1$ hence y is exponentially decaying, and c is called the **decay rate**.
- The constant y_0 is equal to $y(0)$, and is called the **initial value**.
Definition

The logarithm with base a is the inverse of the exponential function with base a:

\[y = a^x \quad \iff \quad x = \log_a y \]
Logarithms are exponents

\[\log_a x \]

\[\log_a y \]

\[R \]

\[R^+ = (0, \infty) \]

\[a^x \]

\[x \quad \text{and} \quad y \]

\[\begin{align*}
\log_2 1 &= 0 \quad \text{because} \quad 2^0 = 1, \\
\log_2 2 &= 1 \quad \text{because} \quad 2^1 = 2, \\
\log_2 4 &= 2 \quad \text{because} \quad 2^2 = 4, \\
\log_{10} 1000 &= 3 \quad \text{because} \quad 10^3 = 1000, \\
\log_3 81 &= 4 \quad \text{because} \quad 3^4 = 81, \\
\log_9 81 &= 2 \quad \text{because} \quad 9^2 = 81, \\
\log_2 .25 &= -2 \quad \text{because} \quad 2^{-2} = \frac{1}{4} = .25.
\end{align*} \]
The graph of $y = \log_a x$ is obtained by reflecting the graph of $y = a^x$ across the diagonal line $y = x$.
Logarithmic laws

- \(\log_a 1 = 0 \)

- \(\log_a a = 1 \)

- \(\log_a (x y) = \log_a x + \log_a y \)

- \(\log_a \frac{x}{y} = \log_a x - \log_a y \)

- \(\log_a \frac{1}{y} = -\log_a y \)

- \(\log_a (x^p) = p \log_a x \)
Logarithms with special base

- We write the logarithm with base 10 as $\log x$.
- We write the logarithm with base e as $\ln x$.
- The logarithm with base e is called the **natural logarithm**.